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Running head: LARGE MAMMAL SPECIES RICHNESS IN SW AUSTRALIA 

ABSTRACT: The precipitation history of south-west Australia since 

the Last Glacial Maximum (LGM) has important implications for 

understanding southern hemisphere climate dynamics. Previously 

reported environmental records indicating more open vegetation 

during the LGM have been interpreted in terms of aridity, but such 

changes can be explained by alternative mechanisms. To provide new 

evidence concerning the region’s Quaternary precipitation history, 

we examine temporal changes in large mammal richness at four 

south-west Australian fossil sites: Devil’s Lair, Tunnel Cave, 

Witchcliffe Rock Shelter and Rainbow Cave. Large mammal 

richness is correlated strongly with mean annual precipitation across 

53 modern Australian communities. Extending this relationship to the 

fossil record, a steady increase in richness from the LGM to the onset 

of the Holocene at both Devil’s Lair and Tunnel Cave is consistent 

with increased precipitation through time. This supports previous 

interpretations of a more arid LGM and implies regional 

heterogeneity in the position of the southern hemisphere westerlies. 

A reduction in richness during the last ~1000 years is unlikely to be 

the result of precipitation change and may be related to more frequent 

burning of the landscape by hunter-gatherers in an effort to increase 

availability of large prey. 
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Introduction 

The late Quaternary climate history of south-west Australia has important implications for 

understanding the diversity and distribution of its endemic flora (Cowling et al., 1996; Hopper and 

Gioia, 2004; Yates et al., 2010), its rich archaeological and palaeontological records (Archer et al., 

1980; Dortch and Smith, 2001; Prideaux et al., 2010; Dortch et al., 2012), and the mechanisms 

underlying a substantial decline in precipitation over the last several decades (Treble et al., 2005; 

Hope et al., 2010). Despite this importance, the nature and drivers of precipitation change in the 

region since the Last Glacial Maximum (LGM, ~26–20 ka) remain unresolved. 

Today, precipitation in south-west Australia is strongly seasonal, with most rainfall occurring in the 

winter when the southern hemisphere westerlies migrate northward and embedded fronts transport 

moisture inland. Displacement of the southern hemisphere westerlies during the LGM probably 

played a central role in determining regional precipitation regimes at this time (Wyrwoll et al., 2000; 

Shulmeister et al., 2004; Fletcher and Moreno, 2012), but consensus concerning their position is 

lacking. Hubbard (1995a,b) suggests that the expansion of Antarctic sea ice during glacial conditions 

would have contributed to an equatorward displacement of the westerlies, bringing more winter 

rainfall to south-west Australia (see also Van Zinderen Bakker, 1976). This is consistent with dust 

records from the Tasman Sea, which indicate a ~350-km equatorward migration of the westerlies 

during the LGM and previous glacial phases (Hesse, 1994; Kawahata, 2002; Hesse et al., 2004). In 

contrast, drawing on lake level records across the continent, Harrison (1993) argues that reduced 

LGM lake levels reflect aridity caused by a poleward shift of the westerlies (see also Harrison and 

Dodson, 1993), which is also suggested by the general circulation model presented by Wyrwoll et al. 

(2000; but see Shulmeister et al., 2004). More recently, it has been argued that there was little change 

in the winter westerly track in south-east Australia at the LGM (McGowan et al., 2008; Shulmeister et 

al., 2016). Conflicting interpretation of LGM palaeoclimate records and their implications for the 

position of the westerlies is not unique to Australia, but is typical of all southern hemisphere 

landmasses (Markgraf, 1987; Heusser, 1989; Lamy et al., 1999; Stuut et al., 2004; Chase and 

Meadows, 2007; Fletcher and Moreno, 2012; Faith, 2013). 

Faunal and vegetation records from south-west Australia have generally been interpreted as 

indicative of arid conditions during the LGM (Balme et al., 1978; Pickett, 1997; Dortch and Smith, 

2001; Dortch, 2004b; Dortch and Wright, 2010; but see O’Connor et al., 1993). These interpretations 

are based primarily on evidence suggesting more open forest cover in the LGM, giving way to closed 

forest during the Holocene. However, these vegetation shifts can be explained by alternative 

mechanisms. Reduced atmospheric CO2 concentrations during the LGM (Monnin et al., 2001) may 

contribute to an opening of vegetation structure irrespective of precipitation change, especially in the 

fire-prone ecosystems of south-west Australia (Gill and Catling, 2002). Under conditions of low CO2, 

the growth rate of trees is reduced, potentially preventing them from reaching a fire-proof size 

between burn intervals and allowing fast-growing grasses and shrubs to expand at the expense of trees 

(Bond and Midgley, 2000; Bond et al., 2003). This may be compounded by the competitive advantage 

of C4 plants (grasses), which are otherwise rare in the region today (Hattersley, 1983), at lower CO2 

concentrations (Ehleringer et al., 1997; Prentice et al., 2011). In other contexts, including parts of 

southern Africa with a similar Mediterranean climate, the confounding effect of atmospheric CO2 has 

complicated attempts to infer LGM precipitation regimes based on environmental proxies that, as is 

the case of south-west Australia, indicate an expansion of open habitats (Avery, 1982; Klein, 1983; 

Deacon and Lancaster, 1988; Chase and Meadows, 2007; Faith, 2013). In addition, in the near-coastal 

settings of south-west Australia, a lower water table related to the LGM marine regression could 

potentially drive more open vegetation structure irrespective of precipitation change (see discussions 

in Pickett, 1997; Dortch, 2004b). These complicating factors imply that vegetation change alone is an 

imperfect proxy for LGM precipitation regimes. It follows that new data are needed to provide a more 

robust interpretation of the late Quaternary precipitation history of south-west Australia. Our aim here 

is to provide such evidence based on an analysis of temporal changes in large mammal species 

richness. 
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Methods 

Species richness and precipitation 

The relationship between species richness and precipitation is well documented by biogeographers, 

ecologists and palaeoecologists across a diverse range of taxa and ecosystems (e.g. Rosenzweig, 

1995; Grayson, 1998; Andrews and O’Brien, 2000; Olff et al., 2002; Lomolino et al., 2010; Faith, 

2013). Broadly, higher precipitation translates to greater primary productivity, in turn supporting more 

herbivore biomass and more species in a given area. In some cases, richness has been observed to 

decline at higher precipitation, in part due to a reduction in plant nutrient content (Olff et al., 2002). 

For Australian mammals, Smith et al. (1994) document a moderate relationship (r2 = 0.348) between 

richness and annual precipitation using coarse data from 5° × 5° cells across the continent. We 

provide a more refined perspective here using species lists from 53 Australian National Parks and 

wildlife areas (Travouillon and Legendre, 2009) coupled with precipitation data [mean annual 

precipitation (MAP)] extracted from the 5 arc-minute WorldClim global climate layers (Hijmans et 

al., 2005, Table 1). Large mammals (>500 g; mass data from Travouillon and Legendre, 2009) are 

emphasized here because microfauna (e.g. small-bodied dasyurids and murids) from fossil 

assemblages in south-west Australia and elsewhere are inconsistently reported in the literature. The 

500-g size threshold for large mammals has no ecological basis and may differ from schemes devised 

elsewhere; it is used here solely to maximize comparability between the modern communities and the 

fossil assemblages we examine. Invasive large-bodied mammals introduced since European 

colonization are excluded from our counts of species richness. In addition to MAP, we also consider 

richness in relation to the geographical area of each wildlife reserve, given its probable effects on 

species richness (i.e. the species–area curve; Rosenzweig, 1995). 

The fossil sample 

We analyse temporal trends in large mammal richness across four sites in south-west Australia: 

Devil’s Lair, Tunnel Cave, Witchcliffe Rock Shelter and Rainbow Cave (Fig. 1). These sites are 

located within a limestone ridge (Tamala Limestone) in the Leeuwin-Naturaliste Region in the far 

south-west corner of Australia, which is today characterized by diverse plant communities including 

heath, scrub, woodland and forest. All sites lie within 1–2 km of all components of the modern forest 

mosaic (Beard, 1981) and receive between 1000 and 1100 mm annual rainfall (Hijmans et al., 2005). 

A detailed account of the stratigraphy, chronology, archaeology and faunal remains for each site is 

provided by Dortch (2004a) and Dortch and Wright (2010); see also Dortch et al. (2012). The faunal 

data used here are derived from the species lists provided in Dortch and Wright (2010). 

The stratigraphy and radiocarbon chronology of the faunal samples are reported in Table 2 (from 

Dortch, 2004b). Radiocarbon dates are calibrated using the IntCal13 calibration curve (Reimer et al., 

2013) in OxCal 4.2 (Bronk Ramsey, 1995). Devil’s Lair preserves a Late Pleistocene faunal sequence 

dating to before, during and after the LGM. Tunnel Cave provides a faunal sequence dating from the 

onset of the LGM through the Holocene, with nearby (<10 km) Witchcliffe Rock Shelter and 

Rainbow Cave providing complementary records for the last ~1000 years. We exclude the basal 

Devil’s Lair assemblages from our analysis (DL1–2), given the substantial amount of time-averaging 

indicated by the radiocarbon dates (Dortch, 2004b). Likewise, the uppermost assemblages (DL12–14) 

are excluded because of small sample sizes (DL14) and because associated age estimates suggest that 

they sample both Pleistocene and mid-Holocene faunas (DL12/13) (Dortch, 2004b). At the remaining 

sites, we include only those 15 assemblages providing number of identified specimens (NISP) counts 

of at least 50 to eliminate the potential effects of small samples. 

Table 3 reports large mammal abundances, according to NISP (Tunnel Cave, Witchcliffe Rock 

Shelter, Rainbow Cave) or minimum number of individuals (MNI: Devil’s Lair), and the number of 

taxa (NTAXA) for the faunal assemblages included in the analysis. Because variation in NTAXA is 
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strongly influenced by sample size (Grayson, 1984; Lyman, 2008), we control for sample size effects 

using rarefaction analysis, whereby larger faunal sample sizes are rarefied down to a smaller sample 

size, allowing a direct comparison of species richness at comparable effective sample sizes. 

Rarefaction analysis was conducted using the Paleontological Statistics (PAST) software package 

(Hammer et al., 2001), which makes use of the algorithm outlined by Krebs (1989). 

The Devil’s Lair assemblages are unusual compared with many other fossil assemblages (Lyman, 

2008) in that the observed NTAXA is identical across assemblages (Table 3) despite substantial 

variation in sample size (MNI: 44–265). This may suggest that relatively few individuals are needed 

to sample all species in the community, perhaps reflecting the impoverished local faunas following 

massive extinctions through the Pleistocene (Johnson, 2006). Rarefaction analysis remains a useful 

tool in this context, however, by providing an indication of how quickly species accumulate as 

sampling effort increases, with more diverse (heterogeneous) communities providing greater richness 

at smaller sample sizes. 

To place temporal trends in species richness within a broader context of faunal change, we conduct 

a correspondence analysis (CA) on taxonomic abundance data for each of the sites (Greenacre and 

Vrba, 1984). This allows us to examine associations between different stratigraphic units and different 

taxa. We use the primary axis scores (CA Axis 1) for each stratum to broadly summarize its 

taxonomic composition and examine how these values change through time and in relation to 

NTAXA. Devil’s Lair is considered separately because of the different abundance measure published 

for its fauna (MNI vs. NISP). 

Taphonomic evidence implicates humans, carnivores and raptors in the accumulation of faunal 

remains from these sites (Dortch, 2004a). It is therefore important to evaluate whether changes in 

NTAXA are the result of taphonomic change. Bone modification data tracking the contributions of 

different accumulators (e.g. cut-marks, carnivore tooth-marks and gastric etching) are unavailable for 

the assemblages examined here, but we are able to examine the relationship between rarefied NTAXA 

and several relevant taphonomic variables (Table 4; data from Dortch, 2004a). For Tunnel Cave, these 

include the density of flaked-stone artefacts and percentage of burned bone, both of which provide 

proxies for human occupation intensity, and the density of coprolites, probably from Tasmanian devil 

(Sarcophilus harrisii), which provides a proxy for carnivore activity. Complementary data for Devil’s 

Lair are available only for flaked-stone artefact densities. We assume that variation across these 

variables tracks bone accumulation by different taphonomic agents. 

Results 

Species richness and precipitation 

Table 1 reports NTAXA, MAP (mm a−1) and geographical area (ha) for each of the 53 modern 

communities. Consistent with observations in Australia and beyond, we observe a significant positive 

correlation between NTAXA and MAP (r2 = 0.543, P < 0.001; Fig. 2). This relationship is not 

homoscedastic; the residuals of the reduced major axis regression between NTAXA and MAP 

increase significantly at higher values of MAP (Breusch–Pagan test for heteroscedasticity: P = 0.005). 

Log-transformation of both NTAXA and MAP provides a tight linear relationship (r2 = 0.706, 

P < 0.001) that is also homoscedastic (Breusch–Pagan test: P = 0.963). 

Surprisingly, we observe a weak inverse relationship between NTAXA and (log-transformed) 

geographical area (r2 = 0.091, P = 0.028; Fig. 2). This relationship is probably spurious, however, as 

there is also a weak inverse relationship between MAP and geographical area (r2 = 0.104, P = 0.018), 

indicating that larger wildlife reserves are also among the driest (e.g. Simpson Desert National Park). 

Multiple regression considering all variables (log-transformed) simultaneously indicates a significant 

effect of MAP (P < 0.001) but not of area (P = 0.606). 
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Late Quaternary changes in richness 

Results of the CA are illustrated in Fig. 3. For the analysis of Devil’s Lair and the combined analysis 

of Tunnel Cave, Witchcliffe Rock Shelter and Rainbow Cave, species that prefer more open habitats 

(Petrogale lateralis, Perameles bougainville) versus closed habitats (Setonix brachyurus, Macropus 

eugenii) are at opposite ends of CA Axis 1, suggesting that this axis is primarily an indicator of 

habitat structure (see also Dortch and Wright, 2010). When CA Axis 1 scores for Devil’s Lair are 

plotted through the sequence, there is a stronger open habitat signal from units DL6 to DL9, broadly 

corresponding to the LGM (Table 2), with closed conditions observed before and after. A 

complementary pattern is observed at Tunnel Cave, which documents a stronger open habitat signal 

during the LGM and Lateglacial compared with a closed habitat signal during the Holocene. 

The Devil’s Lair assemblages are rarefied down to an effective sample size of 44 individuals, 

corresponding to the smallest assemblage (DL11) considered here (Table 3). Rarefied richness 

increases slightly but steadily from the onset of the LGM (DL6) through the end of the Pleistocene 

(DL11) (Fig. 4; Spearman’s rho: rs = 0.943, P = 0.003). This broadly tracks the shift to increasingly 

closed habitats (Fig. 3), although the correlation between rarefied NTAXA and CA Axis 1 scores is 

only weakly significant (rs = 0.617, P = 0.076). Rarefied NTAXA is not correlated with artefact 

densities (rs = −0.100, P = 0.776). 

For Tunnel Cave, Witchcliffe Rock Shelter and Rainbow Cave, assemblages are rarefied down to 

an effective sample size of 69 specimens, corresponding to the sample size of the Rainbow Cave 

assemblage (Table 3). Tunnel Cave documents a similar increase in richness from the onset of the 

LGM at base of the sequence (TC9L/10) to terminal Pleistocene assemblage TC5L (Spearman’s rho: 

rs = 0.810, P = 0.022). Following the transition to closed habitats at the Pleistocene–Holocene 

transition (Fig. 3), richness remains high through the early Holocene (TC5U and TC2), but drops to 

levels below those observed during the LGM in assemblages dating to the last ~1300 years at Tunnel 

Cave, Witchcliffe Rock Shelter and Rainbow Cave. There is no significant relationship between 

rarefied NTAXA and CA Axis 1 scores (rs = 0.382, P = 0.160) at these sites. For the Tunnel Cave 

assemblages, rarefied NTAXA is unrelated to artefact densities (rs = 0.145, P = 0.670), the percentage 

of burned bone (rs = 0.391, P = 0.235) or coprolite densities (rs = 0.282, P = 0.401). 

Discussion 

Consistent with observations from a broad range of ecosystems and spatial scales (e.g. Rosenzweig 

and Abramsky, 1993; Rosenzweig, 1995; Danell et al., 1996; Grayson, 1998; Olff et al., 2002; Faith, 

2013), large mammal richness in Australia is strongly mediated by precipitation (Fig. 2). The 

observed heteroscedasticity (Fig. 2) probably reflects the fact that at low MAP, richness is 

consistently low because of limited primary productivity (i.e. richness cannot be high), but as MAP 

increases, the effects of other variables that can also influence richness, especially nutrient availability 

(Bell, 1982; Olff et al., 2002), become important and allow for richness to take on a broader range of 

values. Variance may also be introduced by local extinctions in historical times, primarily due to 

landscape transformation and introduction of invasive species (Fusco et al., 2016), resulting in lower 

richness in some modern communities than predicted by precipitation. The lack of a significant 

positive correlation between richness and geographical area may reflect habitat homogeneity within 

the National Parks, such that increasing area does not sample new habitats and new sets of species 

(Travouillon and Legendre, 2009). 

Changes in NTAXA at Devil’s Lair and Tunnel Cave (Fig. 4) are not readily explained by 

taphonomy (Table 4), in which case a palaeoenvironmental explanation is reasonable (see also Dortch 

and Wright, 2010). Based on the modern relationship between richness and MAP, the observed 

changes in NTAXA can be interpreted as reflecting a steady increase in precipitation from the LGM 

to the end of the Pleistocene. The extent to which this reflects changes in absolute precipitation versus 

effective precipitation is unclear, given the opposing effects of increasing temperatures (Petit et al., 

1999) and a potential decline in wind speeds on evaporation rates (Larsen, 2011). Richness through 
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the early to mid-Holocene at Tunnel Cave remains high, suggesting enhanced precipitation compared 

with during the LGM. The weak (Devil’s Lair) or insignificant (Tunnel Cave) correlations between 

NTAXA and the principal axis of the CA (Fig. 3) indicates that these long-term trends in richness are 

not directly related to the shift from open to closed forests (CA Axis 1). 

These trends are consistent with previous interpretations derived from faunal (Balme et al., 1978; 

Dortch, 2004a; Dortch and Wright, 2010), pollen (Pickett, 1997) and charcoal assemblages (Dortch, 

2004b), suggesting drier conditions during the LGM of south-western Australia, in contrast to the 

scenario whereby an equatorward shift of the westerlies during the LGM contributed to greater 

rainfall in the region (Hubbard, 1995a,b). Global climate modelling of the LGM in south-west 

Australia produces highly variable results because the region has few constraining data points. 

Nevertheless, the average model consensus is that westerly circulation did not change much and 

modelled precipitation is very similar to modern (Wyrwoll et al., 2000). The key elements that would 

have controlled the position of the westerlies are the extent of winter sea-ice in the eastern Indian 

Ocean sector of the Southern Ocean and the persistence and location of a blocking winter high-

pressure cell over temperate southern Australia that may have impeded the approach of westerly 

fronts. Estimates of winter sea-ice from this sector of the Indian Ocean are sparse, but it appears that 

there was a northward expansion of sea-ice by up to 10° of latitude at the LGM (Gersonde et al., 

2005). This would have displaced the westerly wind belt northward, but while high-latitude ocean 

fronts moved strongly equatorward, the frontal shifts probably became more compressed northwards. 

This would have generated a zone of increased storminess south of western Australia, but may not 

have resulted in substantially increased onshore flow. The pattern would have been reinforced by the 

intensification of winter high pressure over southern Australia as lower LGM winter temperatures 

enhanced downwelling. Evidence for little overall change in the LGM winter westerlies is now 

emerging from south-east Australia (McGowan et al., 2008; Shulmeister et al., 2016) and this work 

suggests either little change or even reduced winter westerly penetration in south-west Australia. 

The rather ambiguous pattern of (little) change in the westerlies is similar to southern South 

America, where conflicting evidence suggests both significant shifts in track or no movement at the 

LGM (e.g. Lamy et al., 1999; Rojas et al., 2009), but differs from the western portion of southern 

Africa where the LGM was clearly wetter and the westerlies were displaced equatorward (e.g. Stuut et 

al., 2004; Chase and Meadows, 2007; Faith, 2013). This suggests that changes in the Southern 

Hemisphere westerlies were not uniform. Instead it implies that the winter polar jet was deflected 

southwards during the LGM in the eastern Indian Ocean/western Australian region, resulting in 

reduced westerly flow in the southern portion of western Australia. 

The youngest assemblage from Tunnel Cave, as well as the similar-aged records from Witchcliffe 

Rock Shelter and Rainbow Cave, are characterized by the lowest species richness observed over the 

last ~25 000 years. While this could reflect marked aridity during the last ~1300 years, there is no 

evidence of dry conditions in the charcoal assemblage from Tunnel Cave (Dortch, 2004b) or in 

regional pollen records (Newsome and Pickett, 1993; Pickett, 1997). It seems likely that this recent 

decline in richness is related to alternative mechanisms. One such mechanism is fire. Intensified fire 

regimes can contribute to a grassy or sparse forest understorey, in turn driving a reduction in 

herbivore richness (Gill and Catling, 2002). At Tunnel Cave, the abundance of macrocharcoal (g kg−1 

of excavated sediment), much of which probably washed into the site during winter storms, increases 

substantially through the Holocene (Dortch, 2004b). To the extent that observations linking fire 

frequencies to macrocharcoal abundances in lacustrine environments (e.g. Tinner et al., 1998; 

Conedera et al., 2009) can be applied to cave settings, this pattern is consistent with more frequent 

forest fires. 

The increase in fire frequency documented at Tunnel Cave is not observed in charcoal records 

across temperate Australia (Mooney et al., 2011), but it does track a possible increase in human 

occupation of south-west Australia (Dortch, 2004a). Aboriginal hunter-gatherers may have 

deliberately increased burning regimes to enhance availability of large prey, as macropods are 

common in recently burned areas (Christensen and Kimber, 1975) and expansion of the grassy 

understorey may also attract large grazers (Cork and Catling, 1996). Both oral history (Kelly, 1999) 

and historical accounts (Hallam, 2002) indicate that fire was employed by south-west Australian 

hunter-gatherers to clear dense vegetation and drive macropod species into the open. A link between 
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fire and macropod hunting is also suggested at the Wonitji Janga rock shelter, 40–55 km north of the 

sites examined here. A preliminary report on the faunal remains documents a significant decline of 

macropods in the upper stratigraphic units post-dating European colonization (Dortch et al., 2014), 

coincident with a reduction in fire frequency suggested by regional pollen cores (Pickett, 1997). 

We propose that reduced richness in the last ~1300 years is the result of intensified fire regimes 

related to human subsistence strategies. Provisional support for this scenario is provided by an inverse 

relationship between rarefied NTAXA and the abundance of western grey kangaroo (Macropus 

fuliginosus), the largest extant mammal known from the region, across the Holocene assemblages at 

Tunnel Cave, Witchcliffe Rock Shelter and Rainbow Cave (rs = −0.857, P = 0.012). Thus, the 

reduction in richness in the latest Holocene, which tracks intensified burning at Tunnel Cave (Dortch, 

2004a), is associated with increased representation of a preferred prey species (Dortch and Wright, 

2010). Whether this increase is due to human prey choice or a decline in the availability of species 

that require a more dense forest understorey remains to be determined. 

Conclusions 

Understanding the drivers of LGM–Holocene precipitation change in south-west Australia, and more 

broadly throughout the southern hemisphere, first requires consensus concerning the region’s 

precipitation history. In particular, establishing whether the LGM was wet or dry has important 

implications for debates concerning the position of the southern hemisphere westerlies (Wyrwoll et 

al., 2000; Shulmeister et al., 2004; Fletcher and Moreno, 2012). Previous interpretations of 

environmental records from south-west Australia suggest an arid LGM, but the evidence for this – 

namely a more open vegetation structure – could be influenced by alternative mechanisms. 

Here we contribute to an understanding of precipitation change in south-west Australia through an 

examination of species richness in the fossil record. We show that large mammal richness is strongly 

influenced by MAP in modern Australian ecosystems. Extending this relationship to the past, we 

observe significant increases in large mammal richness, suggesting increased precipitation, from the 

LGM to the end of the Pleistocene. This supports the hypothesis of an arid LGM, although it is 

incompatible with models predicting an equatorward expansion of the southern hemisphere westerlies 

into the region. In addition, the fossil records document a substantial decline in richness in the latest 

Holocene. This is unlikely to reflect precipitation change, but may instead be related to more frequent 

burning of the landscape by human populations in an effort to increase availability of large high-

ranking prey. 
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Figure 1. Location of south-west Australian fossil sites (inset) and the 53 modern large mammal communities 

compiled by Travouillon and Legendre (2009). See Table 1 for key to sites. Mean annual precipitation (MAP) 

data from Hijmans et al. (2005). 

Figure 2. (Top) The relationship between large mammal richness and mean annual precipitation in Australia 

(mm). (Bottom) The relationship between large mammal richness and geographical area in Australia [log(ha)]. 

Solid lines represent the reduced major axis (RMA) regression. 

Figure 3. Correspondence analysis of large mammals across stratigraphic units at (top) Devil’s Lair and 

(bottom) Tunnel Cave, Witchcliffe Rock Shelter and Rainbow Cave. Axis 1 values are reversed for Devil’s Lair 

so that assemblages with greater abundances of open habitat species (e.g. Petrogale lateralis, Perameles 

bougainville) plot to the right. LGM assemblages are consistently associated with open habitat species (positive 

Axis 1 scores for Tunnel Cave and negative Axis 1 scores for Devil’s Lair). 

Figure 4. Results of rarefaction analysis for (top) Devil’s Lair and (bottom) Tunnel Cave, Witchcliffe Rock 

Shelter and Rainbow Cave. The Devil’s Lair assemblages are rarefied to a sample size of 44 individuals (sample 

size of DL 11), while those from the remaining sites are rarefied to a sample size of 69 specimens (sample size 

of RC1). 
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Table 1. Large mammal richness (NTAXA), mean annual precipitation (MAP) and geographical area (ha) of 

the 53 modern communities. Site numbers used in Fig. 1 are in parentheses. 

Modern community Latitude Longitude NTAXA MAP 

(mm) 

Area (ha) 

Abercrombie NP (1) −34.1 149.7 9 855 19 000 

Ben Lomond NP (2) −41.6 147.7 13 1312 16 456 

Blue Mountains NP (3) −33.6 150.5 19 1264 267 297 

Boodjamulla NP (4) −18.7 138.3 10 538 282 000 

Bookmark Biosphere Reserve (5) −33.6 140.7 6 240 603 342 

Bundjalung NP (6) −29.2 153.3 17 1434 20 119 

Carnarvon NP (7) −25.1 148.2 22 714 298 000 

Croajingolong NP (8) 37.7 149.4 19 1000 101 000 

Currawinya NP (9) −28.8 144.5 9 320 151 300 

Deua NP (10) −35.9 149.7 13 987 117 826 

Diamantina NP (11) −23.8 141.3 7 256 500 000 

Douglas-Apsley NP (12) −41.8 148.2 13 936 16 080 

Fitzgerald River NP (13) −33.9 119.9 9 479 242 727 

Flinders Ranges NP (14) −31.4 138.6 7 349 95 000 

Gawler Ranges NP (15) −32.5 135.4 4 299 166 000 

Grampians NP (16) −37.1 142.5 13 695 167 200 

Gregory NP (17) −15.6 131.3 8 838 1 300 000 

Gundabooka NP (18) −30.5 145.7 8 358 63 903 

Iron Range NP (19) −12.7 143.3 17 1722 47 090 

Kakadu NP (20) −13.1 132.4 16 1383 1 980 400 

Kalbarri NP (21) −27.8 114.2 7 415 183 004 

Karijini NP (22) −22.2 118.0 9 401 627 400 

Kinchega NP (23) −32.5 142.3 8 259 44 262 

Kosciuszko NP (24) −36.5 148.3 19 1708 625 525 

Ku-ring-gai Chase NP (25) −33.6 151.2 15 1261 14 928 

Lamington NP (26) −28.2 153.2 22 1648 20 500 

Little Desert NP (27) −36.5 142.0 7 445 132 000 

Main Range NP (28) −28.1 152.4 24 1103 18 400 

Millstream-Chichester NP (29) −21.4 117.9 5 330 200 000 

Mount Barney NP (30) −28.3 152.7 20 1377 13 000 

Mount Buffalo NP (31) −36.7 146.8 10 1385 31 000 

Mount Field NP (32) −42.7 146.7 15 1041 15 881 

Mount Remarkable NP (33) −32.8 138.1 10 511 16 000 

Mungkan Kandju NP (34) −13.4 142.3 14 1529 456 000 

Mungo NP (35) −33.5 143.1 4 299 88 637 

Mutawintji NP (36) −31.2 142.4 7 267 68 912 

Nitmiluk NP (37) −14.1 132.5 14 1154 292 800 

Prince Regent River NP (38) −15.4 125.4 11 1341 633 825 

Purnululu NP (39) −17.5 128.4 11 590 200 000 

Savage River NP (40) −41.3 145.4 14 1853 35 660 

Shoalwater Bay Conservation Park (41) −22.3 150.2 21 1002 239 100 

Simpson Desert NP (42) −25.4 138.2 2 166 1 000 000 

Snowy River NP (43) −37.2 148.4 21 889 98 700 

South-East Forest NP (44) −37.0 140.7 21 950 115 534 

Stirling Range NP (45) −34.4 117.9 12 501 115 920 

Uluru-Kata Tjuta NP (46) −25.4 131.0 4 320 132 550 

Vulkathunha–Gammon Ranges NP (47) −30.4 139.1 5 305 122 900 

Wadbilliga NP (48) −36.4 149.6 14 898 98 530 

Wilson’s Promontory NP (49) −38.9 146.3 9 992 49 000 

Witjira NP (50) −26.4 135.6 4 133 777 000 

Wyperfeld NP (51) 35.5 142.0 7 356 356 800 
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Yumbarra Conservation Park (52) −31.7 133.6 4 263 327 000 

Yuraygir NP (53) −29.8 153.2 15 1444 30 955 

 

 

Table 2. The stratigraphy and radiocarbon chronology of the faunal samples from Devil’s Lair, Tunnel Cave, 

Witchcliffe Rock Shelter and Rainbow Cave. AMS radiocarbon dates for Devil’s Lair are in bold type. 

Assemblage Age (14C a BP) Age (cal a BP)  Assemblage Age (14C a BP) Age (cal a BP) 

Tunnel Cave  Devil’s Lair 

Layer 1 

(TC1) 

1370 ± 40 1291 ± 34  Phase 11 

(DL11) 

11 870 ± 150 13 724 ± 175 

Layer 2 

(TC2) 

    12 050 ± 140 13 935 ± 201 

Layer 3 

(TC3) 

4280 ± 60 4845 ± 98   13 050 ± 80 15 621 ± 153 

Layer 5U 

(TC5U) 

6900 ± 60 7742 ± 64  Phase 10 

(DL10) 

11 960 ± 140 13 823 ± 177 

 8270 ± 80 9254 ± 114   12 000 ± 180 13 907 ± 262 

 9940 ± 110 11 473 ± 187   12 950 ± 110 15 493 ± 175 

Layer 5L 

(TC5L) 

12 890 ± 250 15 354 ± 429   13 300 ± 120 15 989 ± 177 

 12 400 ± 240 14 564 ± 406  Phase 9 

(DL9) 

13 975 ± 450 16 925 ± 206 

Layer 6 

(TC6) 

−   Phase 8 

(DL8) 

17 560 ± 460 21 264 ± 569 

Layer 7U 

(TC7U) 

16 080 ± 90 19 398 ± 130   16 970 ± 620 20 596 ± 772 

Layer 7L 

(TC8L) 

17 380 ± 105 20 983 ± 166  Phase 7 

(DL7) 

19 160 ± 380 23 135 ± 437 

 17 110 ± 250 20 669 ± 329   17 370 ± 290 21 015 ± 383 

 16 850 ± 110 20 323 ± 148   19 835 ± 75 23 872 ± 124 

 17 010 ± 260 20 544 ± 335   21 270 ± 620 25 541 ± 700 

Layer 8 

(TC8) 

    21 820 ± 480 26 187 ± 509 

Layer 9U 

(TC9U) 

19 300 ± 650 23 377 ± 772  Phase 6 

(DL6) 

17 100 ± 810 20 809 ± 992 

 19 735 ± 130 23 764 ± 171   19 000 ± 250 22 929 ± 297 

Layer 9M 

(TC9M) 

21 110 ± 220 25 420 ± 251  Phase 5 

(DL5) 

19 250 ± 900 23 395 ± 1078 

Layers 9L–

10 

(TC9L/10) 

21 100 ± 360 25 342 ± 407   23 050 ± 250 27 323 ± 232 

 21 215 ± 165 25 543 ± 174   24 930 ± 335 29 031 ± 383 

 19 110 ± 460 23 103 ± 529   24 200 ± 1400 28 794 ± 1502 

 22 410 ± 850 26 751 ± 829  Phase 4 

(DL4) 

25 500 ± 275 29 679 ± 383 

     20 400 ± 1000 24 678 ± 1126 

     21 850 ± 210 26 127 ± 218 

    Phase 3 

(DL3) 

26 590 ± 360 30 727 ± 318 

     25 900 ± 300 30 116 ± 368 

Witchcliffe Rock Shelter  Rainbow Cave 

Layers 1–3L 

(WRS1–3L) 

400 ± 50 430 ± 63  Spits 1–5 

(RC1) 

340 ± 45 397 ± 56 

Layers 4U– 680 ± 90 640 ± 69     
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M 

(WRS4U/M) 

Layers 4L-5 

(WRS4L/5) 

Undated      

 

 

Table 3. Sample size (MNI for Devil’s Lair; NISP for Tunnel Cave, Witchcliffe Rock Shelter and Rainbow 

Cave), species richness (NTAXA) and rarefied NTAXA (MNI = 44 for Devil’s Lair; NISP = 69 for Tunnel 

Cave, Witchcliffe Rock Shelter and Rainbow Cave) across the 24 large mammal assemblages included in the 

analysis. See Table 1 for chronology. 

Assemblage Sample 

size 

NTAXA Rarefied 

NTAXA 

Devil’s Lair    
DL11 44 12 12.0 

DL10 229 12 11.3 

DL9 116 12 11.2 

DL8 90 12 11.0 

DL7 126 12 11.1 

DL6 265 12 10.7 

DL5 74 12 11.5 

DL4 86 12 10.9 

DL3 167 12 11.3 

Tunnel Cave    
TC1 94 9 8.9 

TC2 83 11 10.8 

TC5U 224 11 10.6 

TC5L 317 12 11.4 

TC6 442 12 10.9 

TC7U 291 12 10.9 

TC7L 477 12 10.8 

TC8 155 11 10.3 

TC9U 205 11 10.4 

TC9M 118 10 9.5 

TC9L/10 413 11 10.5 

Witchcliffe Rock Shelter    
WRS1-3L 120 8 7.8 

WRS4U/M 163 9 8.9 

WRS4L/5 97 9 8.9 

Rainbow Cave    
RC1 69 8 8.0 

 

 10991417, 2017, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jqs.2888 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [14/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

This article is protected by copyright. All rights reserved 

Table 4. Artefact density (number L–1 sediment at Devil’s Lair and number kg–1 sediment at Tunnel Cave), 

abundance of burned bone (%), and coprolite density (number kg–1 sediment) at Devil’s Lair and Tunnel Cave. 

Assemblage Artifact 

density 

% 

Burned 

bone 

Coprolite 

density 

Devil’s Lair    
DL11 0.400 − − 

DL10 0.895 − − 

DL9 0.151 − − 

DL8 0.330 − − 

DL7 3.312 − − 

DL6 2.331 − − 

DL5 0.180 − − 

DL4 0.059 − − 

DL3 0.041 − − 

Tunnel Cave    
TC1 0.010 0.46 0 

TC2 0.003 0.14 0.033 

TC5U 0.006 0.03 0.018 

TC5L 0.025 9.29 0.029 

TC6 0.128 2.53 0.156 

TC7U 1.095 13.90 0.585 

TC7L 2.108 34.07 0.116 

TC8 0.089 3.60 0.068 

TC9U 0.148 7.51 0.040 

TC9M 0.135 5.91 0.140 

TC9L/10 0.026 2.01 0.051 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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